

Ministry of Technical Education College Of Electronic Technology

Department of Communication Engineering

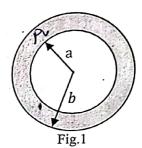
(Fall-2024) 07-09-2024

Electromagnetic Part I (Final Exam)

Time: 2.00 hours

Note: This is an open notes, open book, closed friend, open mind test. On your desk you should have not any internet-probled devices such as a server. internet-enabled devices such as a computer or mobile phone.

Q1: (40 points)


1. Express as a vector function the gradient (maximum directional derivative) of the following scalar fields

$$E(\rho, \varphi, z) = 15\rho^2 \cos\varphi + 200\rho \sin\varphi + 100z \cos\varphi$$

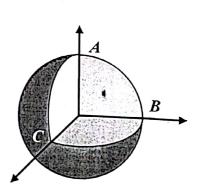
$$G(\rho, \varphi, z) = 75\rho^2 z \cos \varphi + 50\rho \sin \varphi$$

Find the magnitude of ∇E and ∇G at $p_1(2,45^\circ,1)$ and determine the expression for the unit vector $\mathbf{a}_{\nabla E}$ and $\mathbf{a}_{\nabla G}$. Find the angle between ∇E and ∇G at $p_1(2,90^\circ,1)$. (20%)

2. Figure 1 shows, A spherical shell of charge possesses the constant volume charge density ρ_v between its inner and outer radii a and b. Find the E field for r < a, a < r < b and r > b. (20%)

Q2: (30 points)

Assuming the same right circular cylindrical region of radius $\rho = a$ and length L as its shown in Fig.2. Illustrate the correctness of the divergence theorem for this region, given the electric field:


(a)
$$E(\rho, \varphi, z) = a_{\rho} \rho^3 / 4\varepsilon_{o} a^2$$
. (15%)

(b)
$$E(\rho, \varphi, z) = a_o a / 4\varepsilon_o \rho$$
 (15%)

Q3: (30 points)

A φ -directed field is defined by $G(r,\theta,\varphi) = a_{\varphi} 5r \sin \theta \sin \varphi$ in a region of space.

- a) Find curl G at any point. (10%)
- b) Evaluate the integral $\int G(r,\theta,\varphi)ds$ over the surface S of a sphere of radius r=R appearing within the first octant as shown, bounded by the closed path ABC. (10%)
- c) Find the answer to (b) another way by use of Stokes's theorem. (10%)

-- Good Luck --